
IDM
Functional Parts

Jeffrey Wix

IDM Technical Architecture

Focus on Functional Parts

IDM Technical Architecture

• REMINDER
• A unit of information, or a single information idea, used by solution

providers to support an exchange requirement
• A functional part is a complete schema in its own right as well as

being a subset of the full standard on which it is based

Users

• aware of process and
business impacts

• doesn’t need technical
detail about use of
information in the process

• does not need to know
about software or format

• needs to know what
information to expect
and how to use it in
the business process

• does not need to know
about software or
format

• writes software + data
exchange interface

• needs to know what
users expect from
software

• needs to know about
the exchange format

IDM’s Exchange Requirement definition

Overview Information Units

Exchange Requirement

Functional Part <A>

Functional Part

Functional Part

Functional Part <m>

Functional Part <n>

Functional Part <x>

Functional Part <y>

Results

Overview

Technical Concepts

Exchange Requirement

List of Entities/Data

Graphical Schema

• Plain language description to make it easy
to understand for different groups
(managers, project participants, software
developers

• Appendix contains information on how
applications should be used to ensure
correct IFC export and/or import

Appendix: application usage

Formal Schema

• Building professional terminology – No
deep technical detail or references to
data format.

• Identifies the information needing to be
exchanged at a point in the business
process

• One or several “groups” of information
required to perform a certain process.

• Possibility to define separate exchange
requirements for each “group”.

• This applies to the both to the Information
delivered to the process and from the
process (the result).

• Identifies the functional parts to be used in a
Exchange Requirement

• Recursive, enabling re-use and re-
combination at many levels

WHAT

• A unit of information, or a single information idea, used
by solution providers to support an exchange
requirement.

• A functional part describes the information in terms of
the required capabilities of the industry standard
information model upon which it is based.
– For IDM as presently established, the functional parts are based

on versions of the IFC model.

• A functional part is fully described as an information
model in its own right as well as being a subset of the
information model on which it is based.
– i.e. a functional part is a complete information exchange

specification

Functional Part - Basics

• A functional part describes the actions that are carried
out within a business process to provide the resulting
output information.

Functional Part - Reuse

• A functional part may be used by many exchange
requirements
– geometric shape representations
– relationships
– general concepts (cost, materials etc.)

Functional Part - Decomposition

• Functional parts can be broken down into other
functional parts

Functional Part Development

• A functional part contains
the following sections:
– header section

• administrative information
– overview section

• short description of purpose
– results section

• outcome of the functional
part

– technical concepts section
• detailed technical description

using the selected standard
– lists section

• entities, datatypes, functions
and property sets used

– schema section
• presentation of the schema

– examples section
• examples of how the

functional part is used
– software guidance

• how software applications
support the functional part

Functional Part <A>

Functional Part

Functional Part

Functional Part <m>

Functional Part <n>

Functional Part <x>

Functional Part <y>

Overview

Technical Concepts

List of Entities/Data

Graphical Schema

Formal Schema

Header Section

Name Model System

Identifier xxx Schema / Release IFC 2x2A1

• name or title of the functional part
• conform to the IDM naming rules

• unique identifier (not used)
• will provide index of all published

functional parts

• creation of and changes made to
the functional part.

• include date, person identifier
and a description of the changes
made.

• schema name and release
• a functional part is applicable for

a particular release of a schema

Change Log

2005-07-27 Created jdw@aec3.com

2005-08-20 References to IfcElectricalCircuit
added

jdw@aec3.com

2005-09-08 Name and description datatypes added jdw@aec3.com

2006-03-12 Updated for presentation.
‘Recommended’ attributes defined

jdw@aec3.com

2006-10-27 Guidance and examples includes.
Electrical circuit moved into separate
functional part
(fp_model_electrical_circuit)

jdw@aec3.com

Naming Rules

• Why do we have naming rules?
– Consistency in naming
– Grammatical rules
– Progressive development of a ‘scripting’ language

• A functional part name has three parts
– the prefix ‘fp’ identifies that this component is a functional part
– an action (or activity) required expressed as a verb.
– an object that receives the action expressed as a noun or noun

phrase).
• may be a direct object as in ‘model wall’
• may be an implied indirect object as in ‘associate material’

– which means associate {to wall} {the} material

Allowed actions

• Naming rule allow various actions to be applied.
• These are from an allowed range that includes:

– Assign: an object as an attribute of another
– Associate: an externally defined idea
– Connect: how objects come together
– Define: provision of a set of properties
– Model: key ideas that are expressed
– Present: an image, including annotation elements
– Represent: a form of geometric representation
– Select: alternative selections that may be available
– Sequence: the time relationship between processes
– Set: values that may be set for a purpose

Naming Rules Diagram

‘Relate’ is not used. It is the implication of the
indirect object. Typically shown as a relationship
in a schema (c.f. IFC)

Naming Tree

Overview Section
• states aims and content in (fairly)

non-technical form
• whilst a functional part is intended

for solution providers, a ‘user’
should still be aware of the
content

Provides the information concerning systems where a system is a
grouping of elements. In the context of a distribution system, all of
the elements that are grouped to form the system should be subtypes
of IfcDistributionElement.

As well as enabling the description of complete systems, this
functional part enables the grouping of elements into subsystems.

For an electrical system, the subtype IfcElectricalCircuit is used.
This provides a simple approach to validate that only electrical items
are connected to the electrical system.

The information provided about a system includes:
• Specification of a name and description for the system if required
• The elements that are grouped together to form the system.

Note that the shape representation of a system is derived from the
shape representation of the elements that are grouped together within
it. The system itself has no ‘own’ shape representation.

Further information about the system may be provided through
locally defined property sets. There are no predefined property sets
for systems.

• first part is an ‘excerpt’
– abbreviated description of the

functional part for web sites, Wiki
site

• remainder extends the discussion
and makes clear the intended
content and purpose

• Mau use terminology that is from
the standard, schema etc.

Results

• a simple statement of the outcome of a functional part

Specification of the system and the elements that make up the system

Technical Concept

Description Entity/Pset/Functional Part M
A
N

R
E
C

O
P
T

Specify the system occurrence in which elements will
participate

A system opening is directly specified as an occurrence.

IfcSystem
OR
IfcElectricalCircuit

Set the global unique identifier IfcSystem.GlobalId IfcGloballyUniqueId
OR
IfcElectricalCircuit.GlobalId IfcGloballyUniqueId

Assert the owner history of the system IfcSystem.OwnerHistory fp_apply_owner_history
OR
IfcElectricalCircuit.OwnerHistory
fp_apply_owner_history

Specify the name of the system.

Although this is an optional attribute within IFC, it must
be asserted for system.

IfcSystem.Name IfcLabel
OR
IfcElectricalCircuit.Name IfcLabel

Specify a description for the system

Whilst the description does not add value to the semantics
of the system, it can provide significant information for
later project stages.

IfcSystem.Description IfcText
OR
IfcElectricalCircuit.Description IfcText

Description of information required
and specification of values to be set

Mandatory (actual/
recommended) or
Optional to use

Name of entity/attribute or
property set/property to be
used

Note use of IFC
schema terminology

Convention for attributes/properties

• The convention defined within the IDM for the
expression of object/attribute/datatype and property
set/property/datatype is as follows:
– Object.Attribute Datatype
– OR
– PropertySet.Property Datatype

• For a property set, where a defined datatype is used,
the form is:
– PropertySet.Property Defined type :: Datatype

Lists

• The list section shows the IFC components used
• Provides a quick ‘view’ of the schema

– Entities
• The subjects (or classes of item) of current interest

– Datatypes (defined, enumeration and select)
• Named types of data that may be used within the functional part

such as labels, text descriptions, identifiers OR;
• Enumerated values from which a selection should be made OR;
• Alternative selections of route through the schema

– Function
• Processing capabilities used to validate data

– Property sets
• Those property sets that are relevant to the current functional part

– Functional parts
• Other functional parts whose services are used

Lists Example

• IFC Entities Required
– IfcElectricalCircuit
– IfcElement
– IfcGroup
– IfcObject
– IfcProduct
– IfcRoot
– IfcSystem

• IFC Datatypes Required
– IfcGloballyUniqueId
– IfcLabel
– IfcText

• IFC Functions Required
– -

• IFC Property Sets Required
– Pset_SystemCommon

• IDM Functional Parts Required
– fp_assigns_to_group
– fp_apply_owner_history
– fp_define_by_properties
– fp_place_object
– fp_represent_product
– fp_services_building

Schema Section

• Presents the functional part as a schema
• There may be more than one schema presented
• With IFC, two schemas are routinely presented and

three are easily possible
– EXPRESS-G

• The name of the graphical notation often used
– EXPRESS

• The name of the data definition language which is the ‘master’ form
of the IFC standard.

• EXPRESS is standardized as ISO 10303 part 11:2004
– ifcXML

• An XML form of the schema as an alternative to EXPRESS
• Automatically converted from EXPRESS using a softwrae tool

compliant with the rules of ISO 10303 part 28 (XML binding)

Schema (Graphical)
IfcGloballyUniqueId *STRING

IfcSlabTypeEnum

(ABS)
*IfcProduct

(ABS)
*IfcObject

(ABS)
IfcRoot

1

(ABS)
IfcPropertyDefinition

1

(INV) DefinesType S[0:1]
HasPropertySets L[1:?] *IfcTypeObject

*IfcTypeProduct

(ABS)
*IfcElementType

(ABS)
*IfcBuildingElementType

IfcSlabType

PredefinedType

ElementType

Tag

RepresentationMaps S[1:?]
fp_map_representation

ApplicableOccurrence

*GlobalId

Name

Description

OwnerHistory
fp_apply_owner_history

(ABS)
*IfcElement

(ABS)
*IfcBuildingElement

*IfcSlab

PredefinedType

Tag

ObjectType

ObjectPlacement
fp_place_object

Representation
fp_represent_product

Key Leaf entities
for functional part

fp_define_properties

to IfcPlacement

to IfcRepresentation

to IfcOwnerHistory

Schema (Data Definition Language)

Included functional parts
(schema imported)

Examples Section
• provide guidance to implementers
• may be used by them for preliminary testing to ensure that they are

returning the correct results from their solutions.
• examples may include:

– a description of the example scenario
– samples of IFC files according to the schema of the functional part to

show how the results of using the functional part might appear in
practice

– sample instance diagrams providing an easier visual reference

Example 1: Definition of a single geometric representation context, being the basic model context. It only contains
the absolute mandatory information.

Note: It is an IFC2x2 example which still has the WorldCoordinateSystem given, even if it defaults to
Location=[0.,0.,0.] an z-axis=[0.,0.,10.] and x-axis =[1.,0.,0.].

/* Definition of the project */
#17=IFCPROJECT('02b_zn_n5BUhvEFQj1tiGU',#16,'DefaultProject','Automatically generated
project',$,$,$,(#11),#6);

/* Definition of the geometric representation context */
#11=IFCGEOMETRICREPRESENTATIONCONTEXT('TestGeometricContext','Model',3,$,#10,$);
#10=IFCAXIS2PLACEMENT3D(#9,$,$);
#9=IFCCARTESIANPOINT((0.,0.,0.));

Examples – Instance Diagram

• Instance diagrams show
the entities from the
example file as
‘graphical’ objects

• Can be useful in adding
to understanding of the
example

Software used is ‘GraphicalInstance’ by Eurostep

Compiling Exchange Requirements

• A fundamental premise of
IDM is that an exchange
requirement can be
generated by compiling a
set of functional parts.

• Simply, it can be seen as
‘shopping’ for a basket of
functional parts.

• More theoretically, it is
the sum or integral of the
functional parts

ER = ΣFP

Overview of Parts

• This illustration shows the
relationship between the
IFC schema, exchange
requirements and
functional parts.

• Specifically, it shows that
an exchange requirement
is strictly specified by its
constituent functional
parts

Adding Functional Parts

• Functional part FP1 includes
functional parts A and B.

• It also includes fp1 which is fully
defined within the definition of FP1

• The schema for FP1 is obtained by
adding together the schema of all the
included functional parts.

FP1 = fp1 + A + B
• That is, add all of the entities in each

schema into the total schema.
• By doing this, the same entity may be

included in the total more than once.
• This is not allowed.

– Each entity may only appear once in
the total schema.

Adding Entities in Functional Parts

• Therefore, the process of adding schemas together also has to
resolve the issue of overlapping entities such that each required
entity appears only once. That is:
if fp1 shows the set of entities S and X (shown as fp1 = SET {S, X})
and A = SET {U, V, W, Z}
and B = SET {T, U, V, X, Y}
then FP1 = SET {S, T, U, V, W, X, Y, Z}

Delivering an Exchange Requirement

• An exchange requirement is made up of
functional parts, so …

• it’s schema is also obtained by adding
together the schemas of the contained
functional parts.

• ER1 = FP1 + FP2
• If FP1 = fp1 + A + B + C

and
• FP2 = fp2 + D + E + F

then it follows that:
• ER1 = fp1 + A + B + C + fp2 + D + E + F

Including Other Exchange Requirements

• An exchange requirement can also include
other exchange requirements.

• This facility can be used effectively to reduce
the effort needed in describing the information
requirements. That is:
ER2 = ER1 + FP1 + FP2

• This is no different to the addition of functional
parts as …

• an exchange requirement ultimately reduces to
the functional parts from which it is built.

• Therefore, a reference to an included
exchange requirement is only a reference to a
set of functional parts that are used to build it.

Resolving Exchange Requirements

A functional part cannot
contain exchange
requirements

But it can contain the
functional parts that define
the exchange requirement

	IDM�Functional Parts
	IDM Technical Architecture
	IDM Technical Architecture
	Users
	IDM’s Exchange Requirement definition
	WHAT
	Functional Part - Basics
	Functional Part - Reuse
	Functional Part - Decomposition
	Functional Part Development
	Header Section
	Naming Rules
	Allowed actions
	Naming Rules Diagram
	Naming Tree
	Overview Section
	Results
	Technical Concept
	Convention for attributes/properties
	Lists
	Lists Example
	Schema Section
	Schema (Graphical)
	Schema (Data Definition Language)
	Examples Section
	Examples – Instance Diagram�
	Compiling Exchange Requirements
	Overview of Parts
	Adding Functional Parts
	Adding Entities in Functional Parts
	Delivering an Exchange Requirement
	Including Other Exchange Requirements
	Resolving Exchange Requirements

