Var är vi? Vart går vi?
Perspektiv på datorstöd i byggnaget

"Mjuka" resurser, i form av information/kunskap och kontrollmekanismer i människa-dator-system kan hanteras på ett sätt som vi inte känner igen från de konventionella manuella systemen — det gäller både projekttering, byggestyrning, materialhantering, underhåll, drift etc.

Att ta steg in i informationsåldern innebära inte bara att förstärka vissa mentala funktioner hos människor utan också att förse processer eller mekaniska "muskler" — maskiner, robotar — med någon form av intelligens eller förmåga att fungera i olika situationer.

Drivkrafter

Det tog ungefär femton år från det att forskning inom CAD-området (Computer Aided Design) startade till dess att vi hade system som var praktiskt användbara. Idag har vi stora problem med att på olika nivåer integrera existerande system för CAD, databashantering och beräkningar/analys.

Drivkrafterna bakom detta är att datorresurser i allt större utsträckning kommer till användning åt flera. Allt kompaktare elektroniska kretsar banar väg för billiga och effektiva datorer, lagringsmedier och in-utenheter. Förestående fält och datorresursens prestanda och möjligheter är starkt avseende: bättre lagring och utbytbarhet, mer kapacitet, lättare hantering, lättare förhållande till andra system etc.

Vi befinner oss för närvarande, enligt mitte förmenade, på en plats i utvecklingen av datorresurser, där vi anstränger oss att anpassa existerande datatorresurser efter våra behov och omständigheter. Emellertid kommer kraven på oss att utveckla datorprogram som kan hantera olika typer av information, så att vi kan arbeta med olika typer av data i olika system. Detta kräver att vi utvecklar nya förhållanden och nya tekniker som kan hantera olika typer av data i olika system.
Kunskapsförmedling

- Högteknologiproduktionen ("Intelligenta"
byggnader, avancerad visualisering- och modelleringsteknik, robotisering, kunskapsbaserade system, uppbrygg
- Förkärlek i byggmaxx
- Kunskapsomfattande projekt
- Social påverkan
- Kvalitet på existerande byggnads
- Kunskap om byggsprocessen
- Informationshantering och metodfrågar
- Byggsprocessen
- System och utrustning

"Intelligenta datorsystem"

Datorsystemen kommer framöver att kunna göra mera "intelligenta", innebärande exempelvis att de
- kan förse för att utesätta på ett mera mänskligt sätt
- understödjer resonemang under problemlösning
- kan förstå naturligt språk
- kan göra förråda till inläsning
- är mera flexibla, kan hoppa mellan olika problemområden
- etc.

Förskning inom området avsatta AI, har pågått under flera år gemensamt med blandad resultat vad be
- träffar våra möjligheter att skapa datorsystem som i högre grad än tidigare efterliknar mänskligt beteende. Debat
- som varit intenst i forskningskret
- har nu förts ut från de "initialiserad" skara. Ett spektrum av åsikter finns om
- fordor och möjligheter med den nya tekn
- en Japan benämnd SP generation
- datorsystem. I USA symboliska
- superdatorer. Generellt kan sägas att
- förväntningarna på snabba resultat ofta
- är alltför högt ställda.

Ett resultat av forskningen inom AI
- området är de så kallade expertsystem-
- som utgör de första praktiskt an-
- användbara resultatet av forskningsinsat-
- serna.

Högteknologiprojekt

Högteknologiprojekt har startats upp i Europa (Alvey, Esprit, Eureka etc.) och i USA efter det att startskottet gick i Japan 1982.

Exempel på områden inom högteknologi-
- projekt (med byggskeftingsrelev-
- ans) är:
- Naturligt språk, granskning mot data-
- Återvinnning av granskning
- Expertsystem, kunskapsbaserade sys-
- tem
- Systemuppbyggnadskjälmpel
- Intelligenta robotar
- Datorstöd integrierad av tillverkn-
- dingsprocesser
- Bildbehandling, märkning, kännskaps
- Parallell datorarkitektur.

Expertsystemen utgör de första prakt-
- tiska fungerande datorsystemen inom en
- grupp av system som ofta benämns kun-
- skapsbaserade system, KBS. Marknaden för expertsystem förväntas öka drami-
- atiskt under kommande år.

Kunskapsbaserade system

Vad skiljer ett kunskapsbaserat system från ett konventionellt datorprogram? Man brukar säga att dessa system är mera beskrivande än de är föreskrivande. Begreppet kunskapsbaserade sys-
- stet står för en rad olika representationer
- av "kunskap". Exempelvis talar
- man om objektorienterade system vilka
- är speciellt lämpliga för hantering av objekt och relationer mellan dessa. Objektorienterade system kan innehålla delmodeller (av byggskeftare och byggskefta-
- objekt), som kan representeras grafiskt på en bildskärmar i form av objekten knutna symboler.

Figur 2. Schematisk bild av expertsystem.

ANVÄNDE
AI-baserad teknik kommer att få stor spridning i de flesta applikationer som involverar datorresurser (vid modellbygge, vid gränssnittshantering mänsk-samma, mänsk-samka-system och-system-system). Det kan vara lämpligt att belysa begreppspapparen med utgångspunkt från expertsystemen.

Avhandling av expertsystem

Så kallade expertsystem för diagnos och rådgivning har funnits tillgängliga i begränsad omfattning under några år. Dessa system har exempelvis varit behjälpliga vid diagnostisering av sjukdomar, test av prospektering och val av analyserprogram.

Några exempel på användningsområden:
- **diagnos** (byggskador, förorningar, felsökning...)
- **övervakning** (byggtäkta driftssystem, larm, förändring konstruktioner, handikapphjälpmedel...)
- **tolkning** (av beräkningsresultat, gränssnitt mellan programmoduler, tolkning av bilder...)
- **rådgivning** (vid systemanvändning, stöd vid unsammanfattning, val av tillverkningsmetoder och material...)
- **styrning** (kontroll av robotar, tillverkningsprocesser, byggtäkta driftssystem, informationshanteringsprogram...)
- **planering** (projektplanering, "stads"planering, underhåll, resursslökening...)

Figur 3. Schematisk beskrivning av byggsprocessen och dess huvudelement.

- design (gränssnitt mot databaser för material, utrustning, normer, projektdata etc, erfarenhetsinsamling...)

De bästbara persondatorerna öppnar intressanta perspektiv liksom möjligheten att kopplas till optiska skrivmaskiner på vilka även bilder och "filmsekvens" kan lagras. Expertsystemen kan kommunicera med människor eller datorer i andra datorsystem (proceser).

Samspelet kan underlätta

Då vi datoriserar olika delar av byggsprocessen kommer kraven på de modeller av byggsprocessen vi ställer upp att ytterligare skäppas jämfort med kraven på de ofta mycket flexibla "manuella" modeller vi hittills arbetat med. I Fig 3 antyds schematiskt byggsprocessen med dess olika huvudelement. Det kan vara lämpligt att särskilja den mera processrelaterade informationen från information som beskriver det projekt vi arbetar med (byggnad etc från idéskiss till fär dig produkt med tillhörande dokumentation). Forutom process och projektenformation måste information om de da-
torisera verktyg vi har tillgång beaktas.

Nya typer av system börjar att byggas, så kallade objektorienterade system, se [12] där en modell av exempelvis en byggnadsstruktur eller byggaktiviteter byggas upp och manipuleras på ett intelligenterare sätt än vad som hittills varit möjligt med konventionella CAD-system.

Vid avdelningen för Bärande konstruktioner LTH tittar vi på liknande system, bl a KEE-systemet från Intellicorp/Texas/Sperry. Här skall inte närmare beröras det pågående standardiseringsarbetet i byggnadsmodeller och dataväxten som pågår både internationellt och nationellt (IGES, MAP etc). Om man vill ta sig konstatera att denna utmaning är stora och att det sedan 1983 avancerat en workshop i USA, framvisande av avancerad teknologi i samband med byggprojektning, se [16]. Arbetet har efterhand fokuserats mot utveckling av integrerade datavisualiseringshåll för att förbättra bland annat dessa i grunden ofrenförråda beställningskrav i samband med förvaltning av sina byggnader. Denna utveckling avskeendes sårbara i allt för hög grad domineras av krav från projekteringsleden.

Möjligheter och risker

De nya verken tvingar oss att förstå vår ”verklig” bättre och bli tätare att analysera om ”god” förändringar av arbetsmiljöer och organisation av byggnadspersonen. Att förbättra kvalitén på arbete, organisation och produkter vi vill uppnå genom införande av datorresurser. Vi ser nu att de måste anses tillräckligt flexibla ej särbar system, vilka bibeherhåller och ökar antalet ”frihetstage”. Positiva och negativa effekter måste vägas mot varandra.

Referenser

[12] Rosenfeld L W, Belzer A P, 1986, Breaking through the Complexity Barriers... a new style of parametric design. ICAD Inc., Cambridge, Massachusetts, USA.
BYGGA MED DATORSTÖD
Innehåll

4 Var är vi? Vart går vi? Perspektiv på datorstöd i byggandet. Per Christiansson
9 Datorstöd i bygpproduktion: bra med rätt totalstrategi. Per Uhlén
11 Byggestyrning med datorstöd: helhetssynens möjligheter. Ulf Danielsson
15 A och O: systemfrågan. Henry Karlsson
17 Datorstödd ekonomistyning för mindre byggeföretag. Bo Darsenius
18 Visualisering med CAD för bättre verkstadsplanering. Jan Bäck
22 Flexible CAD-teknik klarar storprojekten kring Stilm C. Häkan Blom
26 Vatsterminalen ett kraftprov för CAD-teknik.
30 JM: Fyra datorer på bygplatsen.
31 Frontprojektet för datastrategi. Mats Persson
33 Byggunpassat mikrodatorstöd.
35 Låt behovet styra datorstödet. Carl-Eddie Lund och Carl-Martin Wiklund
37 Nordisk Byggdag: Acceptera den nya tekniken. Olle Vävare

Vänta om du töräs!

I for byggfolk från de nordiska länderna, vid Nordisk Byggdag i Helsingfors i augusti, sades det öppet, på klingande norska: Visst kan du vänta med datorintroduktionen i ditt företag och låta andra samla erfarenheter - visst kan du vänta - om du töräs!

Den repliken återspeglar det som de flesta bedömaren nu är ene om: byggbredsen är definitivt på väg in i datoralderen - på gott eller ont, med eller mot sin vilja!

Innehållet i detta nummer av Bygg Special återspeglar tydligt att byggbredsen i Sverige börjar bli datormogen. Sedan är det nog många som menar att det är minst lika viktigt att datorbranschen i sin tur ser till att bli "byggmogen", dvs aktivt medverkar att ta fram de produkter och de sysrorna som passar bygpproduktionens specifika behov.

Vad kommer steto in i datoralderen att betyda för byggbredsen, dess företag och de yrkesmän som berör? Svaret måste bli: det beror på hur väl förberedd man är. Till förberedelserna bör för den enskilde individen i första hand att han/ hon skaffar sig de kunskaper som behövs för att kunna känna sig hemmastadd vid de nya verktygen för informationshante-

OMSLAGSBILDEN:
I Vatsterminalen CAD-system sammanstillade ritningar för A, K, V och E i fyra färger. Dessa "samarbetsritningar" är effektiva hjälpmedel i bevakningens av att inte projektökersiflig göra eller misstänkt uppstå. Ritningen på bildens åtton (i färsktaken) ett avsnitt av en sådan sammanställning, utförd med plotter hos SIAB.